
JOURNAL OF COMPUTATIONAL PHYSICS 95, 29-39 (1991)

Functional Representation of Power-Law
Random Fields and Time Series*

J. A. VIECELLI AND E. H. CANFIELD, JR.

Lawrence Livermore National Laboratory, Livermore, California 94550

Received August 10, 1989; revised March 19, 1990

Current methods of generating stationary random fields having power-law spectra are based
on fast Fourier transforming an array of random numbers with zero mean and unit variance
to wave space. Multiplication by the desired spectrum weight function, followed by inverse
transformation to physical space then yields the sample field. We show that the desired
spectral weightings can be generated directly in physical space, using the successive random
addition methods previously employed for graphical display of random fractals, and derive
expressions for the constants of the process in terms of the spectrum amplitude and exponent.
A formula for the random number call sequence can be derived for the random addition
process, eliminating the need for field array storage. This makes representation of random
fields by a single computational function of the physical coordinates possible. Correspondingly,
the scale range and dimension covered by the field function is limited only by machine word
length. The same method can be used to represent time series with power-law frequency
spectra in functional form, or to include time-dependence in random field problems. 0 1991

Academic Press, Inc.

INTRODUCTION

Monte Carlo computations have been employed to obtain statistical solutions for
problems in which the equations governing the process are known, but the driving
forces or fields are random. In the case of spatially-fluctuating stationary fields, the
need to allocate storage for all of the field points severely limits the scale range that
can be included in a computation. One example is the computation of the turbulent
dispersion of Lagrangian particles in a Kolmogorovian velocity field [l]. In this
case the three components of a random velocity vector potential are generated and
stored for recall at each time step. In this example the rate of dispersion increases
with time, and the limited storage for the velocity field severely limits the scale
range that can be covered. Storage limitations currently preclude inclusion of
power-law time fluctuations in these computations. For example, representing a
three space dimensional time fluctuating field on a 644 grid requires over 1.67 x 10’
words of memory, plus working space. Another example is the use of phase screens
in optical calculations of propagation through turbulent media [2, 31. In these

* Authors supported by U.S. Government Contract W-7405-ENG-48. The U.S. Government’s right
to retain a nonexclusive royalty-free license in and to the copyright covering this paper, for governmen-
tal purposes, is acknowledged.

29
0021-9991/91 $3.00

Copyright c 1991 by Academic Press, Inc.
All rghts of reproduction m any form reserved.

30 VIECELLI AND CANFIELD

problems sets of two-dimensional fields of random numbers are generated at the
beginning of a run. A fast Fourier transform is applied, and the resulting Hermitian
fields are then weighted by an intertial range power-law for the turbulent thermal
fluctuation in the medium. The fields are transformed back to the physical-space
grid, and stored for recall at each time step of the propagation computation.

Many problems in forecasting and control can be described by a set of differen-
tial equations driven by stochastic forcing terms [4]. There is a large body of
theory dealing with Markovian statistics, which can yield good approximate solu-
tions in many instances; however, many, if not most, physical systems are charac-
terized by stochastic forcing having a power-law frequency spectrum. Stochastic
forcing with a power-law spectrum often leads to enhanced diffusion, where the
variance of the driven variable is proportional to some power of the time greater
than one [6]. The problems are similar to those encountered in turbulence, where
many scales of the motion contribute to the forcing. This non-local dependence
implies that very long time intervals, up to a physical cutoff, need to be included
in generating the random forcing function. With the fast Fourier-transform method,
or some of the multiple-correlation methods it is necessary to set aside memory
for the entire time-series sample [6, 73. Generation of fields that are fluctuating in
both space and time, by these methods, is precluded by the enormous storage
requirements.

The problem of how to generate fluctuating random fields or time series with
power-law spectra is closely tied to that of generating random fractal curves and
surfaces. The method of successive random addition has been successfully used to
generate fractals that are quantitatively described by a structure function [S]. This
method is very simple; however, in its present form it also supposes a large storage
array on which successive operations are performed in repeated cycles through the
mesh. Analytical relationships between the input constants for the method and the
desired spectrum amplitude and exponent dependence also need to be derived in
order to use the method. The process is one of successive grid refinement, with field
values at new intermediate grid points obtained by interpolation from the previous
grid. At each level of resolution, random increments are added to the existing field
points, with variance resealed to the given level.

There are well-known relationships between the structure function, the
autocorrelation function, and the power spectrum of a random field or time series
[1,4]. Specification of any one of the three functions determines the other two.
Hence the successive random additions method also generates random fields with
power-law spectra, and can be used in place of the fast Fourier-transform method,
given the appropriate relationship between the constants in the structure function
description and those of the power spectrum characterization. Computing time and
memory requirements are of the same order, since in both methods nearly all of the
time is spent in generating random numbers. However, its simplicity gives
successive random addition the potential for generating the field without the use of
a storage mesh.

Successive random addition can be performed without actually storing the field

POWER-LAW RANDOM FIELDS AND TIME SERIES 31

or time series, because only the portion of each successively liner grid containing
the desired point in space or time need be retained. Only the mesh values associated
with a single zone or time increment are needed at any step in the computation.
However, it is necessary to keep track of the ordering of the calls to the random
number generator as if every grid point were being computed, and to be able to
regenerate only the random numbers needed for those zones containing the desired
field point. This can be done, without resorting to repeating the entire random
number sequence each time a specific number is needed, if every step in the suc-
cessive random addition process is associated with a sequence number of the call
to the random number generator used in that step, and if the sequence number is
expressed by an algebraic formula involving the grid indices and level in the suc-
cessive random addition process. We have found that it is comparatively easy to do
this because of the simplicity of the successive random addition construction. Given
the sequence number, the corresponding random number is easily regenerated by
well-known methods [S, 9).

The method is ideal in high-dimensional situations where values at a relatively
small number of points within the held and/or time series are required, but very
many decades of scale range are desired in defining the spatial extent of the field or
the time interval covered. Since the method generates values from a function of the
spatial or time coordinates, instead of a table look-up and interpolation from a
large array of stored field or time series values, the memory storage problems
associated with attaining a large scale range are eliminated. In the optical example,
the field of turbulent thermal fluctuations may be moving across the beam,
requiring that a small number of new field values, statistically consistent with the
existing field, be supplied at periodic intervals at the upstream edge of the propaga-
tion mesh. In the Lagrangian particle dispersion example it may be desirable to
track the diffusion of a relatively small number of particles over a great distance in
three space dimensions and time. In the case of differential equations driven by
stochastic forcing it may be desirable to follow the evolution over many decades of
time resolution. Functional representation makes this possible by eliminating the
need to store the field or time series.

RANDOM ADDITION WITH SEQUENCE FUNCTION

Random fields can be defined by a power spectrum, the autocorrelation function,
or a structure function. Under isotropy of the field, all three are equivalent. The
structure function D and the autocorrelation function r are related by

D(r) = 2[T(O) -T(r)]. (1)

The structure function is defined by

D(r) = (CA(r, + r) - A(ra)12>, (2)

where A and r are the random-field variable and physical separation, respectively.

581/95/l-3

32 VIECELLI AND CANFIELD

In the case of a fractal, the structure function has the form

D(r) = airZH, (3)

where C: is the structure constant, and His the Hurst exponent c.5, 61. Substituting
Eq. (3) into (l), and making using of the autocorrelation theorem for the power
spectrum P(k),

P(k) = & jy f-(r)eP’ dr (4) m
yields

p(k)=q)-(*H+‘) (5)

for the one-dimensional case. More generally, if d is the Euclidean dimension of the
field, then,

P(k) = a,k-‘*H+d). (6)

If we can generate a random held in physical space satisfying Eq. (3), then by
Eq. (6), it has a power-law spectrum with exponent - (2H + d).

The method of successive random additions generates a field with structure func-
tion given by Eq. (3), for a specified input value of H. The basic idea is to generate
a set of nested grids, each grid a factor of 2 smaller in size, and to generate the field
by a process of interpolation from one grid to the next liner grid, with the addition
at each step of a random perturbation of appropriate amplitude. An example in
two-space dimensions illustrates the process. On the first pass, the values of the field
at the four corners of a square covering the largest region of interest are initialized
by drawing values from a normal distribution with zero mean, and variance ci. The
mesh lines of the grid are defined by the edges of the square. On the second pass
the grid consists of the mesh lines formed by the division of the original square into
four equal squares. Values of the field at the five additional points on this grid are
linearly interpolated from the four original points. Then an additional random
perturbation is added to the field at each of the nine points in the new grid. The
variance of the additional random perturbation is

(7)

On the third pass the grid consists of the mesh lines formed by the division of
the four second-pass squares into 16 equal squares. Values of the field are linearly
interpolated from the existing nine intersection points of the mesh lines in the
second-pass grid to the 16 additional points on the third-pass grid. Additional
random perturbations with variance (i)“” are then added to each of the existing
mesh-line intersection values. The cycle can be continued until the perturbation
variance for the n th grid, given by

POWER-LAW RANDOM FIELDS AND TIME SERIES 33

is reduced to the level of roundoff error. For the purpose of displaying fractal sur-
faces generated by this process, enough storage for the finest grid corresponding to
the raster-display resolution would be required. Normally, this would stop the
iteration at a level of resolution many decades from that available in single-
precision floating-point computation.

If the value of the field is needed at only one point (x,, y,), where (k, 1) are the
indices of the square containing (x, y) on the finest resolution grid, then only
the part of the nested grids containing the point need be computed, provided the
random numbers corresponding to those points can be regenerated without going
through the entire random-number sequence for the given seed. To do this it is
necessary to find the relation between the sequence number of a given call to the
random number generator, and the level number and grid location in the successive
random addition iteration. If (k, 1) is confined to a mesh of side 2N, where N
corresponds to the finest mesh, then the mesh interval 6, of the nth grid is

6 =2--n. n (9)

We compute the nth level indices of the square containing (x, y) on the nth grid
from

k-l
k,,=l+ 6 i 1 n

I- 1
In-l+ 6) L 1 n

(10)

where the brackets signify the integer part. For N = 3, corresponding to division of
the original square region into 64 smaller squares, the index k = 1, 2, 3, 4, 5, 6, 7,
8 for the finest resolution mesh lines. At the first level n = 1, the index k, takes on
values 1, 2. At the second level n = 2, the index k, takes on values 1, 2, 3, 4. At the
third level n = 3, the index k, covers the range 1, 2, 3, 4, 5, 6, 7, 8. We have indexed
the grid squares at each level starting at 1 increasing by increments of 1, because
this may be more helpful for computer programming purposes.

The calling sequence index i is a function of the relative coordinate indices
(k,, I,) and the level of grid-refinement n,

i=2 k,+(1,-1)2”+ i 2*(j-‘) . 1 (11)
j=2

Each time the grid interval is reduced by 2, the nth-level square containing the
field point is split into four addiational squares, and it is necessary to determine
which of the four new sub-regions contains the point (xk, y,). Once this is known,
field values at the corners of the (n + 1)th square can be interpolated from the
corners of the n th square. Storage for only one square is needed, since old values

34 VIECELLI AND CANFIELD

can be overwritten as soon as the interpolation is completed. The relative indices
(k’, Z’) on the n + 1 level grid square containing (k, I) are

k:,+, = 1 +
(k-l)modJ,,

6 n+ I 1

IL+,=l+
L

(I- 1) mod 6,,

1

(12)

6 ’ n+l

where the brackets signify the integer part. With this choice, kk+ 1 and fL+ I take on
values either 1 or 2. These relative indices tell which of the four new squares within
the nth-level square bounded by mesh intersection points (k,, I,), (k, + 1, I, + l),
(k,, I, + l), and (k, + 1, I,), contains the field point (k, I), on sub-dividing the
n th-level mesh.

If (k:,,, &+I) is (1, 1) then the corner value (1, 1) remains the same, (1,2) is
replaced by the average of (1, 1) and (1,2), and (2, 1) is replaced by the average
of (1, 1) and (2, l), while (2, 2) is replaced by the average of (1, I), (1, 2), (2, l),
and (2,2). Permutations of the interpolation correspond with each of the three
other possible values for the relative indices, (k; +], 1: + ,) = (1, 2), (2, l), and (2, 2).
Figure 1 shows a schematic of the initial steps in the sequence of repeated opera-

t
I

(Xi(‘o)) + Xi(Ol>

XiCaO> + xi(Ol)

iXi(Oo)) + Xi(Ol)

k

(XiCao))’ Xi(‘l)

FIG. 1. Schematic showing initial steps in repeated sequence of operations used to generate the field
value at the point (xk, Y,) indicated by the solid dot. x,(u) is the ith random number in a sequence of
random numbers distributed normally with variance O, starting from fixed seed x0. The sequence
number i to use in regenerating the random number is determined from the virtual mesh coordinates
and level of the construction, The only storage required for the computation, aside from the program
instructions, is working memory space for the four current values of the field at the corners of the square
containing the field point.

POWER-LAW RANDOM FIELDS AND TIME SERIES 35

tions performed in generating the field at the point indicated by the solid dot.
Except for values at the corners of the single square containing the point at each
level of the construction, none of the other mesh values need be generated or stored.

On the first pass, values for the field at each of the four corners of the initial mesh
of side W are obtained from the random number generator with variance CJ~. Then,
using the general formulas Eqs. (1 l)-(12), the index (k;, I’,) of the square of side
W/2 containing point (x,, yr) is computed, and field values are interpolated to the
corners of the smaller square containing (x,, y,). Random perturbations are then
added to the field values on the smaller mesh containing the point (x,, v,). The
variance of the perturbations cr, * for the nth level is the fraction of the initial
variance specified by Eq. (8). If the entire field were being generated there would be
no need to keep track of the number of times the random number generator had
been called at the given stage and operation in constructing the field. However, if
only the square in each stage of grid-refinement containing (x,, yI) is to be com-
puted, it becomes necessary to know the number of calls to get to those particular
squares in the full construction in order to be able to regenerate the particular
random number without repeating the entire random number sequence.

The sequence number has to be expressed as a formula, since storing the
sequence numbers in a pointer array corresponding to the spatial grid and level
would require a large storage array. The formula given by Eq. (11) was derived for
a virtual array with 1 entries separated by k,,,, and the inner loops on k. The
sequence number formula also needs to take into account the number of calls
required to generate a normal distribution with zero mean and unit variance. For
the standard square root log cosine method, two successive calls to the random
number generator are required.

The relationship between the structure constant oi, the Hurst exponent H, and
the power spectrum amplitude Ci, and power-law exponent CI, can be obtained
from substitution of the Fourier expansion of the autocorrelation function r into
Eq. (1) and carrying out the inverse transform. For the two-dimensional example
case with power spectrum

G y=C:k-“=(k;+k;)X,2’

Eq. (1) yields

(14)

where r is the separation in physical space. The imaginary part of the integrand
cancels by symmetry yielding

D(r)=yr” s
rr/2 [1 - cos(rk cos O)] k dk de

k” (15)
0 0

36 VIECELLI AND CANFIELD

By change of variable Eq. (15) becomes

D(r) = y /y2 (cos e)- * de Iorn l -,J”yx) dx. (16)

Evaluation of the integrals yields

For the case LI = y, Eq. (17) yields

D(r) = airZH g 0.3565C~rsJ3. (18)

Similar relationships are derivable for the three-dimensional case with spectrum

G
y=(k~+k;+k~)“i27

yielding the structure function

D(r)= -~Q2-r)sin[~(2-~)]r’W3.

(19)

(20)

For the case c(= 1 l/3, corresponding to inertial range turbulence, we obtain

D(r) ~0.1221C;r~‘~. (21)

Note that we use Bracewell’s [lo] system 2 Fourier transform convention, in which
the factors of l/271 are lumped with the inverse transform, whereas most applica-
tions to turbulence lump the 1/2n factors with the forward transform. Multipication
of Eq. (21) by 8n3 yields the well-known form

D(r)-& C:r2j3. (22)

The sequence index for the three-dimensional case is

i=2 k,+(1,-1)2”+(m,-1)22”+ i 23+1) .
J=2 1 (23)

The steps in generating the field on a three-dimensional grid, or in any number of
dimensions, are identical to those for the two-dimensional case.

COMPUTATIONAL RESULTS AND CONCLUSIONS

The two-dimensional stationary-field case was solved by the three independent
methods: the fast Fourier transform, successive random addition, and successive

POWER-LAW RANDOM FIELDS AND TIME SERIES 37

random addition in functional form with sequence key. We examined the case CI = y
corresponding to the spectral-density function for hydrodynamic-inertial-range tur-
bulent fluctuations [11. Successive random addition in either mesh-based form or
functional form gives the same field values to machine roundoff, since the numerical
operations are identical. Figure 2 shows the spectral density function computed
by successive random addition and by the fast Fourier-transform method for a
256 x 256 grid of field values, using Eq. (18) to determine ui and H in terms of c(
and Ci. The two methods are in good agreement, except at the tail end of the spec-
trum, where successive random addition has a slight increase in the amplitude,
resulting from the linear interpolation. This can be improved by using a higher-
order scheme, such as a fourth-order Lagrangian formula, in the interpolation
between meshes. The additional cost is negligible, but the logic of the functional
form is more complicated because additional points have to be carried from one
level to the next.

Although there is some overhead involved in computing relative indices, and
interpolating between meshes, nearly all of the computing time used in successive
random additions, in either mesh-based or functional form, is spent in generating
random numbers satisfying a normal distribution. For large n, the number of

FIG. 2. Inertial range k-“/3 spectral density function generated for 256 x 256 mesh by the fast
Fourier transform method (dots), and by successive random addition (squares) using linear interpola-
tion between meshes.

38 VIECELLI AND CANFIELD

Gaussian random numbers required to generate a mesh with side 2” in
d-dimensional space is

(24)

for successive random addition without sequence function, and

N, = &d(” + ’ 1, (25)

using successive random addition in functional form, with the sequence key, to
generate every point on the 2” grid. We would, of course, not normally be using the
functional form to generate a large stored array, but doing so provides one way of
evaluating the additional computing cost of the functional form. The extra time
required is

For example, to generate the field at every point in a 64 x 64 mesh, using the
functional form to load the mesh, requires 6(22 - 1) = 18 times as many Gaussian
random number evaluations. The actual cost is greater, because computing the
sequence key and the additional bit extraction, tests, and multiplications associated
with extracting the nth random number in a sequence, require more arithmetic
operations. Another indirect factor increasing the cost of extracting particular
random numbers is that the advantage of generating and storing short tables of
random numbers on vector machines is eliminated. The latter factor is a significant
one, and can speed up sequential random-number generation by perhaps a factor
of between 5 to 10. However, the time required to do the log, square root, and
cosine evaluations is the same, so the overall difference is not as great. Typically,
without the benefit of vectorization, we have observed about a 3.5fold increase in
computing time for recalling a specific Gaussian random number by the method
described in [9], compared with generating the next number in the sequence, so
that the total difference in computing time on the 64 x 64 mesh is about a factor of
63. In practice the amount of computing time to load every value in a given mesh
can be estimated quite well by multiplying N, or N, in Eqs. (24) or (25) by the time
required to generate one Gaussian random number.

The additional time to regenerate a random number is spent in testing the bits
of the sequence number and, for non-zero bits, performing a multiply mod 2N,
where N is the number of bits in the machine word length. If the word length is
N = 48 bits, the number of multiplications is at most 48, whereas only one multiply
is needed to generate the next number in the sequence. The number of multi-
plications can be reduced if the function storage space is increased to include
precomputed tables of factored powers of the multiplier [111.

The method described in [9] assumes that the power of the multiplier is

POWER-LAW RANDOM FIELDS AND TIME SERIES 39

expressed in base 2, but a higher base can be used. For example, if we take N= 48
and express the sequence number i in base 8, and if we precompute and store an
8 x 16 table of values of powers of the multiplier, then after extracting the 16 digits
of i, we need at most to do only 16 multiplications of entries from the table to com-
pute the multiplier raised to the ith power. Correspondingly, in base 16 the number
of multiplications is reduced to at most 12, at the cost of storage for a 16 x 12 table
of powers of the multiplier. The size of the table increases rapidly, so one may wish
to stop at base 256, using a 256 x 6 table, requiring at most six multiplications per
random number. The additive term in linear-congruent generators, although not
often used, can also be included and is treated at length in [111.

The scale range that can be covered is determined by the machine word length
in bits. For a 48-bit word length the random number generator repeats at interval
246. From Eqs. (24) and (25) we need nd < 46 in order to have a wide margin. For
example, using a 48-bit word for a three-dimensional field d = 3, the maximum scale
range is approximately 215 = 3 x 104. To include a larger scale range it is necessary
to use double-precision arithmetic in computing the sequence function and
regenerating the random numbers.

The advantages of functional generation are in supplying moderate numbers of
values at specific points, with no storage limits on the scale range or dimension. In
the Lagrangian particle dispersion example, unless the number of particles is very
large, functional generation offers significant advantages in both speed and storage
reductions, as well as the ability to generate a field covering a very large scale range
and to include a fourth dimension for statistical fluctuations in time. In the optical
example, functional generation greatly reduces the storage requirements associated
with supplying new boundary values. For high-dimensional problems, functional
generation has an overwhelming advantage over storage-based methods.

REFERENCES

1. A. S. MONIN AND A. M. YAGLOM, Statistical Fluid Mechanics, Vol. 2, edited by J. L. Lumley (MIT
Press, Cambridge, MA, 1987).

2. M. G. RUSBRIDGE, J. Comput. Phys. 2, 288 (1968).
3. P. B. ULRICH AND J. WALLACE, J. Opt. Sac. Amer. 63, 8 (1973).
4. G. E. P. Box AND G. M. JENKINS, Time Series Analysis (HoldenDay, San Francisco, 1976).
5. R. F. Voss, “Random Fractal Forgeries, ” in Fundamental Algorithms in Computer Graphics, edited

by R. A. Earnshaw (Springer-Verlag, Berlin, 1985), p. 805.
6. J. FEDER, Fructals (Plenum, New York, 1988), p. 180.
7. B. B. MANDELBROT, Water Resow. Res. I, 543 (1972).
8. D. E. KNUTH, The Art of Cornpurer Programming (Addison-Wesley, Reading, MA, 1969).
9. A. E. KONIGES AND C. E. LEITH, J. Comput. Phys. 81, 230 (1989).

10. R. BRACEWELL, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965), p. 6.
11. E. H. CANFIELD, JR. AND J. A. VIECELLI, “Random Access to a Random Number Sequence,”

J. Comput. Phys., in press.

